Inner product spaces Let V be a real vector space.

- An inner product on V is a symmetric, positive-definite [bilinear] 2-form on V,
 i.e., a function that maps each pair of vectors $\vec{v}, \vec{w} \in V$ to their inner product $\langle \vec{v}, \vec{w} \rangle \in \mathbb{R}$, with the following properties:

 - Bilinear: $\langle \alpha \vec{v}, \vec{w} \rangle = \alpha \langle \vec{v}, \vec{w} \rangle = \langle \vec{v}, \alpha \vec{w} \rangle$
 ($\forall \vec{v}, \vec{w} \in V$ and $\alpha \in \mathbb{R}$)

 $\langle \vec{v}_1 + \vec{v}_2, \vec{w} \rangle = \langle \vec{v}_1, \vec{w} \rangle + \langle \vec{v}_2, \vec{w} \rangle$
 ($\forall \vec{v}_1, \vec{v}_2, \vec{w} \in V$)

 $\langle \vec{v}, \vec{v}_1 + \vec{v}_2 \rangle = \langle \vec{v}, \vec{v}_1 \rangle + \langle \vec{v}, \vec{v}_2 \rangle$
 ($\forall \vec{v}, \vec{v}_1, \vec{v}_2 \in V$)

 - Symmetric: $\forall \vec{v}, \vec{w} \in V$, $\langle \vec{v}, \vec{w} \rangle = \langle \vec{w}, \vec{v} \rangle$

 - Positive-definite: $\langle \vec{v}, \vec{v} \rangle \geq 0$
 ($\forall \vec{v} \in V$)

 $\langle \vec{v}, \vec{v} \rangle = 0 \Rightarrow \vec{v} = \vec{0}$

 - $\langle \vec{v}, \vec{w} \rangle$ can be intuitively interpreted as the degree of “agreement” of the vectors \vec{v} and \vec{w}.

- Given an inner product $\langle \cdot, \cdot \rangle$ on V, we define the norm of a vector $\vec{v} \in V$ by $\| \vec{v} \| \overset{\text{def}}{=} \sqrt{\langle \vec{v}, \vec{v} \rangle}$.

 This norm has the following properties:

 - Absolutely homogeneous: $\| \alpha \vec{v} \| = | \alpha | \| \vec{v} \|$
 ($\forall \vec{v} \in V$ and $\alpha \in \mathbb{R}$)

 - Positive-definite: $\| \vec{v} \| \geq 0$
 ($\forall \vec{v} \in V$)

 $\| \vec{v} \| = 0 \Rightarrow \vec{v} = \vec{0}$

 - $\| \vec{v} \|$ is geometrically interpreted as the “length” of \vec{v}, with $\| \vec{v} - \vec{w} \|$ representing the distance between \vec{v} and \vec{w}.

- An inner product space is a real vector space V equipped with an inner product $\langle \cdot, \cdot \rangle$.

 - In an inner product space, we have not only the linear algebra concepts arising from linear combinations, but also notions such as distance, length, angles, projection, and approximation.

 - Two common inner product spaces:

 - \mathbb{R}^m, equipped with the dot product $\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix} \cdot \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix} \overset{\text{def}}{=} x_1 y_1 + x_2 y_2 + \cdots + x_m y_m$

 and the resulting norm $\left\| \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix} \right\| = \sqrt{x_1^2 + x_2^2 + \cdots + x_m^2}$.

 - $C([a, b])$, equipped with the inner product $\langle f, g \rangle \overset{\text{def}}{=} \int_a^b f g$
 (or some scaling thereof)
 and the resulting norm $\| f \| = \sqrt{\int_a^b f^2}$.

 - Two important inequalities hold in any inner product space:

 - The Cauchy-Schwarz Inequality: $| \langle \vec{v}, \vec{w} \rangle | \leq \| \vec{v} \| \| \vec{w} \|$.

 - The Triangle Inequality: $\| \vec{v} + \vec{w} \| \leq \| \vec{v} \| + \| \vec{w} \|$, and its counterpart, $\| \vec{v} + \vec{w} \| \geq \| \vec{v} \| - \| \vec{w} \|$.

The transpose In \mathbb{R}^m, we can transpose matrices and vectors by turning their columns into rows.

 - The transpose is linear: $(\alpha A)^T = \alpha (A^T)$
 and $(A + B)^T = A^T + B^T$.

 - The transpose reverses the order of compositions: $(AB)^T = B^T A^T$.

... and the dot product

Suppose that:
- $\vec{x}, \vec{y} \in \mathbb{R}^m$.
- $A = \begin{bmatrix} \vec{a}_1 & \cdots & \vec{a}_n \end{bmatrix}$ is an $m \times n$ matrix.
- $B = \begin{bmatrix} \vec{b}_1 & \cdots & \vec{b}_p \end{bmatrix}$ is an $m \times p$ matrix.

The transpose relates to the dot product in the following ways:

<table>
<thead>
<tr>
<th>Vector-Vector</th>
<th>Matrix-Vector</th>
<th>Matrix-Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\vec{x}^T \vec{y} = \vec{x} \cdot \vec{y}$</td>
<td>$A^T \vec{x} = \begin{bmatrix} \vec{a}_1 \cdot \vec{x} \ \vdots \ \vec{a}_n \cdot \vec{x} \end{bmatrix}$</td>
<td>$A^T B = \begin{bmatrix} \vec{a}_1 \cdot \vec{b}_1 & \cdots & \vec{a}_1 \cdot \vec{b}_p \ \vdots & \ddots & \vdots \ \vec{a}_n \cdot \vec{b}_1 & \cdots & \vec{a}_n \cdot \vec{b}_p \end{bmatrix}$</td>
</tr>
</tbody>
</table>
Orthogonality and vector projection Suppose that V is an inner product space.

- **Orthogonality:**
 - vector-vector: if $\vec{v}, \vec{w} \in V$, then $\vec{v} \perp \vec{w}$ means $\langle \vec{v}, \vec{w} \rangle = 0$, read “$\vec{v}$ and \vec{w} are orthogonal”.
 - vector-subspace: if $\vec{v} \in V$ and W is a subspace of V, then $\vec{v} \perp W$ means $\forall \vec{w} \in W$, $\vec{v} \perp \vec{w}$.
 - subspace-subspace: if W, W' are subspaces of V, then $W \perp W'$ means $\forall \vec{w} \in W$ and $\vec{u}' \in W'$, $\vec{w} \perp \vec{u}'$.

- $\vec{v} \in V$ is a **unit vector** means $\|\vec{v}\| = 1$, i.e., $\langle \vec{v}, \vec{v} \rangle = 1$.
- Any nonzero vector $\vec{v} \in V$ can be **normalized**, i.e., converted into a unit vector in the same direction, via $\vec{v} \rightsquigarrow \frac{1}{\|\vec{v}\|} \vec{v}$.
- The Pythagorean Theorem holds for orthogonal vectors in any inner product space: $\vec{v} \perp \vec{w} \iff \|\vec{v} + \vec{w}\|^2 = \|\vec{v}\|^2 + \|\vec{w}\|^2$.
 - Important consequence: if $\vec{v} \perp W$, then $\forall \vec{w} \in W$, $\|\vec{v} + \vec{w}\| \geq \|\vec{v}\|$.

- The **vector projection** of $\vec{v} \in V$ onto a nonzero vector $\vec{w} \in V$ is defined by $\text{proj}_{\vec{w}} \vec{v} = \frac{\langle \vec{v}, \vec{w} \rangle}{\langle \vec{w}, \vec{w} \rangle} \vec{w}$.
 - $\text{proj}_{\vec{w}} \vec{v}$ is the multiple of \vec{w} that best approximates \vec{v}.
 - Proven by minimizing the function $f(\alpha) = \|\vec{v} - \alpha \vec{w}\|^2$.
 - Defining $\text{orth}_{\vec{w}} \vec{v} = \vec{v} - \text{proj}_{\vec{w}} \vec{v}$, we find that $\text{orth}_{\vec{w}} \vec{v} \perp \vec{w}$; thus, $\vec{v} = \text{proj}_{\vec{w}} \vec{v} + \text{orth}_{\vec{w}} \vec{v}$ expresses any vector \vec{v} as a multiple of \vec{w} plus a vector orthogonal to \vec{w}.
 - In the case that \vec{w} is a unit vector, the projection formula $\text{proj}_{\vec{w}} \vec{v}$ simplifies to $\langle \vec{v}, \vec{w} \rangle \vec{w}$.

Orthonormal collections

A collection $\mathcal{U} = \{\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_k\}$ is **orthonormal** means that

$$\forall i, j, \langle \vec{u}_i, \vec{u}_j \rangle = \delta_{ij} \overset{\text{def}}{=} \begin{cases} 1, & \text{if } i = j \\ 0, & \text{if } i \neq j \end{cases}$$

in other words, \mathcal{U} is orthonormal if the vectors of \mathcal{U} are mutually orthogonal unit vectors.

- If \mathcal{C} is an orthonormal collection, then \mathcal{C} is linearly independent.
- Any finite collection \mathcal{C} in V can be converted into an orthonormal collection $\mathcal{U} = \{\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_k\}$ having the same span (i.e., an orthonormal basis for span \mathcal{C}) by the Gram-Schmidt Process:

 For each vector \vec{v} of \mathcal{C} in turn:
 - Subtract its projections onto the vectors of \mathcal{U} so far obtained: $\vec{v} \rightsquigarrow \vec{v}' = \vec{v} - \langle \vec{v}, \vec{u}_1 \rangle \vec{u}_1 - \langle \vec{v}, \vec{u}_2 \rangle \vec{u}_2 - \ldots$
 - If $\vec{v}' = \vec{0}$, toss it out; otherwise, normalize it and append it to the orthonormal collection: $\frac{1}{\|\vec{v}'\|} \vec{v}' \perp \mathcal{U}$.

 Tip: Keep any messy scalars resulting from normalization outside the vectors, rather than distributing them to the entries.
- Some useful orthonormal collections:
 - The standard basis $\{\vec{e}_1, \vec{e}_2, \ldots, \vec{e}_n\}$ for \mathbb{R}^n is orthonormal (with respect to the dot product).
 - The collection $\{\frac{1}{\sqrt{2}}, \cos x, \sin x, \cos 2x, \sin 2x, \ldots\}$ is orthonormal in $C([-\pi, \pi])$
 (with respect to the inner product $\langle f, g \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} f \, g$).
Projection and orthonormal collections

Suppose that \(W = \text{span} \{ \vec{w}_1, \vec{w}_2, \ldots, \vec{w}_n \} \) is the subspace spanned by an orthonormal collection in an inner product space \(V \).

- The orthogonal projection of \(\vec{v} \in V \) onto \(W \) is given by \(\text{proj}_W \vec{v} = \frac{\langle \vec{v}, \vec{w}_1 \rangle}{\langle \vec{w}_1, \vec{w}_1 \rangle} \vec{w}_1 + \frac{\langle \vec{v}, \vec{w}_2 \rangle}{\langle \vec{w}_2, \vec{w}_2 \rangle} \vec{w}_2 + \cdots + \frac{\langle \vec{v}, \vec{w}_n \rangle}{\langle \vec{w}_n, \vec{w}_n \rangle} \vec{w}_n \).
- Defining \(\text{orth}_W \vec{v} = \vec{v} - \text{proj}_W \vec{v} \), we find that \(\text{orth}_W \vec{v} \perp W \); thus, \(\vec{v} = \text{proj}_W \vec{v} + \text{orth}_W \vec{v} \) expresses any vector \(\vec{v} \) as a vector of \(W \) plus a vector orthogonal to \(W \).
- \(\text{proj}_W \vec{v} \) is the vector of \(W \) that best approximates \(\vec{v} \).
 · Proven via the corollary to the Pythagorean Theorem and the fact that \(\text{orth}_W \vec{v} \perp W \).

- Example: Fourier polynomials for continuous functions on \([-\pi, \pi] \).
 - The collection \(\mathcal{F}_n = \{ \frac{1}{\sqrt{2}}, \cos x, \sin x, \cos 2x, \sin 2x, \ldots, \cos nx, \sin nx \} \) is orthonormal in \(C([-\pi, \pi]) \) (with respect to the inner product \(\langle f, g \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x)g(x) \, dx \)).
 - Given \(f(x) \in C([-\pi, \pi]) \), the \(n \text{th}-\)order Fourier polynomial for \(f(x) \) is:

\[
\text{proj}_{\text{span} \mathcal{F}_n} f(x) = \left(f(x), \frac{1}{\sqrt{2}} \right) \frac{1}{\sqrt{2}} + \langle f(x), \cos x \rangle \cos x + \langle f(x), \sin x \rangle \sin x + \cdots + \langle f(x), \cos nx \rangle \cos nx + \langle f(x), \sin nx \rangle \sin nx
\]

This function is the linear combination of such sines and cosines that best approximates \(f(x) \) on \([-\pi, \pi] \).

Projection matrices and approximation for linear systems

Suppose that \(A \) is an \(m \times n \) matrix with linearly independent columns.

- \(A^T A \) is invertible, so we can define the projection matrix \(P = A(A^T A)^{-1} A^T : \mathbb{R}^m \rightarrow \mathbb{R}^m \).
 - \(P \) maps vectors orthogonal to \(C(A) \) to zero: \(\forall \vec{y} \perp C(A), \quad P\vec{y} = \vec{0} \).
 - \(P \) maps vectors in \(C(A) \) to themselves: \(\forall \vec{y} \in C(A), \quad P\vec{y} = \vec{y} \).
 - Applying these results to any vector \(\vec{v} = \text{proj}_{C(A)} \vec{v} + \text{orth}_{C(A)} \vec{v} \) shows us that \(P\vec{v} = \text{proj}_{C(A)} \vec{v} \).
 - Thus, given any basis for a subspace of \(\mathbb{R}^m \) (not necessarily orthonormal), \(P \) allows us to project any vector of \(\mathbb{R}^m \) onto their span (by placing the basis vectors into the matrix \(A \) and computing \(P \)).

- This allows us find the best approximate solution to an inconsistent system \([A \mid \vec{b}]\), as follows:
 - Even if the linear system \(A\vec{x} = \vec{b} \) is inconsistent, the system \(A\vec{x} = P\vec{b} \) is consistent because \(P\vec{b} \in C(A) \).
 - From this, we can find the best approximate solution to our original system by transforming it as follows:

\[
[A \mid \vec{b}] \sim [A^T A \mid A^T \vec{b}]
\]

- Application: Curve-Fitting

We can find the best-fitting curve (line, polynomial, exponential, etc.) to some given set of data, simply by using the data points to set up a [possibly inconsistent] system for the coefficients involved, then using the above method to find the best approximate solution.